Online Dynamic Algorithm Portfolios
نویسندگان
چکیده
This thesis presents methods for minimizing the computational effort of problem solving. Rather than looking at a particular algorithm, we consider the issue of computational complexity at a higher level, and propose techniques that, given a set of candidate algorithms, of unknown performance, learn to use these algorithms while solving a sequence of problem instances, with the aim of solving all instances in a minimum time. An analogousmeta-level approach to problem solving has been adopted in many different fields, with different aims and terminology. A widely accepted term to describe it is algorithm selection. Algorithm portfolios represent a more general framework, in which computation time is allocated to a set of algorithms running on one or more processors. Automating algorithm selection is an old dream of the AI community, which has been brought closer to reality in the last decade. Most available selection techniques are based on a model of algorithm performance, assumed to be available, or learned during a separate offline training sequence, which is often prohibitively expensive. The model is used to perform a static allocation of resources, with no feedback from the actual execution of the algorithms. There is a trade-off between the performance of model-based selection, and the cost of learning the model. In this thesis, we formulate this trade-off as a bandit problem. We propose GAMBLETA, a fully dynamic and online algorithm portfolio selection technique, with no separate training phase: all candidate algorithms are run in parallel, while a model incrementally learns their runtime distributions. A redundant set of time allocators uses the partially trained model to optimize machine time shares for the algorithms, in order to minimize runtime. A bandit problem solver picks the allocator to use on each instance, gradually increasing the impact of the best time allocators as the model improves. A similar approach is adopted for learning restart strategies online (GAMBLER). In both cases, the runtime distributions are modeled using survival analysis techniques; unsuccessful runs are correctly considered as censored runtime observations, allowing to save further computation time. The methods proposed are validated with several experiments, mostly based on data from solver competitions, displaying a robust performance in a variety of settings, and showing that rough performance models already allow to allocate resources efficiently, reducing the risk of wasting computation time.
منابع مشابه
Neuro-Fuzzy Based Algorithm for Online Dynamic Voltage Stability Status Prediction Using Wide-Area Phasor Measurements
In this paper, a novel neuro-fuzzy based method combined with a feature selection technique is proposed for online dynamic voltage stability status prediction of power system. This technique uses synchronized phasors measured by phasor measurement units (PMUs) in a wide-area measurement system. In order to minimize the number of neuro-fuzzy inputs, training time and complication of neuro-fuzzy ...
متن کاملVoltage profile improvement through online dynamic voltage restorer controlled by chaos-based genetic algorithm
Improving reliability indices, increasing the grid production capacity, reducing power loss during peak periods and fuel cost, and economic and environmental considerations on the one hand, and the progresses made in the field of semiconductor devices on the other hand, are some of the factors that increase the penetration of the renewable energy sources to the distributed network. When the pho...
متن کاملOSCAR: Online Selection of Algorithm Portfolios with Case Study on Memetic Algorithms
This paper introduces an automated approach called OSCAR that combines algorithm portfolios and online algorithm selection. The goal of algorithm portfolios is to construct a subset of algorithms with diverse problem solving capabilities. The portfolio is then used to select algorithms from for solving a particular (set of) instance(s). Traditionally, algorithm selection is usually performed in...
متن کاملAn empirical study of the dynamic correlation of Japanese stock returns
We focus on the pairwise correlations of Japanese stock returns to study their correlation dynamics empirically. Two types of reduced size sample portfolios are created to observe the changes in conditional correlation: a set of individual stock portfolios created by using a network-based clustering algorithm and a single portfolio created from the mean return indexes of the individual sample p...
متن کاملPortfolio Blending via Thompson Sampling
As a definitive investment guideline for institutions and individuals, Markowitz’s modern portfolio theory is ubiquitous in financial industry. However, its noticeably poor out-of-sample performance due to the inaccurate estimation of parameters evokes unremitting efforts of investigating effective remedies. One common retrofit that blends portfolios from disparate investment perspectives has r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010